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Abstract: Internet of Things (IoT) is believed to play a major role in the future 

of Information and Communication Technology. Following this vision, IoT 

systems will be integrated parts of people's living environments and will provide 

comfort, safety and entertainment. Due to the proximity of deployment to the 

everyday life of people, security and privacy are particularly important factors in 

these systems. In this respect, IoT systems and applications have to be properly 

designed to guarantee secure and reliable services. In this work we propose a 

semi-automated threat and risk modeling method which provides end-to-end 

threat evaluation for IoT systems. This method is dedicated to be used in the 

design process of secure IoT applications or in the security assessment of IoT 

systems. 
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1. Introduction 

Internet of Things (IoT) is one of the most discussed subjects in modern 

Computer Science. It initiated a new wave of innovations, which 

reorganized the core of traditional Information and Communication 

Technology (ICT) by introducing novel features, infrastructures and 

architectures for the Internet oriented services. The IoT paves the way for 

the implementation of complex cyber-physical systems, and it provides 

direct applications to improve the quality of everyday life. In this respect, 

we can find different IoT application domains [1], e.g., industrial, smart 

city and healthcare, with various implementations starting from smart 

homes [2] and smart cities [3], to smart hospitals [4] or smart grids [5]. 

A considerable group of IoT systems is able to control the Things 

connected to them, e.g., building automation systems. These features can 

provide various advantages, e.g., autonomous environments, intelligent 
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buildings or smart hospitals, but in the same time these smart features 

also involve increased risks, because in case of these applications the 

virtual activities from the cyber world are directly connected to the 

physical world. In this respect, an attacker from the cyber world can 

remotely reach the physical world and can perform malicious control 

operations on the physical Things. The impact of these attacks can be 

more severe than a traditional cyber attack, therefore, these systems have 

to be properly designed to avoid these unfortunate activities. 

The National Institute of Standards and Technology (NIST) specifies that 

the basic security requirements for Industrial Control Systems (ICS) are 

availability, integrity and confidentiality, known as AIC model, and these 

typically have priority in this order [6]. This is the ability of the system to 

maintain its performance parameters under conditions of stress, i.e., 

disruptive cyber attacks. Nowadays ICSs tend to include a large variety 

of different embedded hardware devices in their infrastructure, ranging 

from sensors, actuators, through industrial equipments to traditional ICT 

devices. It can be observed that the basic properties of these new 

heterogeneous infrastructures perfectly match the conditions from the 

definition of IoT. In this respect, it can be considered that the IoT 

infrastructures also inherit the AIC requirements, but in case of different 

IoT applications the priority orders may be reorganized. 

In the majority of cases IoT systems are built around the environment of 

people and a large variety of IoT devices provide information about the 

movement, interactions or behavior of people. In addition, an emerging 

technology is the development of wearable embedded devices which are 

believed to gain high popularity in the IoT technology, but unfortunately 

this can bring the cyber world and implicitly cyber attacks closer to 

humans. In this respect, the privacy of IoT users has to be treated on the 

same level with the system security [7][8]. 

Considering the aforementioned security properties and threats, the IoT 

hardware, software and the applied infrastructures have to be properly 

designed and configured to keep these large-scale systems secure. To 

make a system secure this perspective has to be taken in consideration 

starting from the design phase of the system. Therefore, the security 

assessment methods are important components in the design process. In 

this respect, dedicated methods and tools are required for the design and 

maintenance of secure IoT systems. In this work we propose a novel 

semi-automated threat and risk modeling method by bringing together and 
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extending wide-spread threat models, analysis methods and tools. We 

demonstrate the applicability of this method by applying it on a real-

world professional distributed IoT platform. 

The remaining of this paper is organized as follows. Section 2 provides a 

brief overview of related work. Then, Section 3 proposes an IoT data 

model, while Section 4 describes in details the proposed threat and risk 

modeling method. Finally, the conclusions are drawn in Section 5. 

 

2. Related Work 

Many studies discuss the vision, architectural considerations and 

challenging problems related to IoT [1][9]. One of the most challenging 

subjects in IoT is to guarantee security over heterogeneous 

infrastructures. Various surveys summarize the properties, unsolved 

challenges and/or applied technologies regarding IoT security 

[7][8][10][11][12]. 

In the scientific literature several guidelines and tools are described 

which are dedicated to security and risk assessment. 

The STRIDE threat modeling approach and the DREAD threat risk 

model, both proposed by Microsoft, are the most popular methods for 

threat analysis. These will be presented in details in section 4. Trike is an 

open source threat modeling methodology and tool [13] similar to 

STRIDE/DREAD, with a risk based approach at its core. AS/NZS 4360, 

proposed by the Australian/New Zealand Standard, is a formal standard 

for documenting and managing risks [14] which follows the steps: 

establish context, identify the risk, analyze the risk, evaluate the risk, 

treat the risk. The guide [15] discusses the process of cyber-security 

assessment in detail and describes the Common Vulnerability Scoring 

System (CVSS). This guide states that the traditional cyber-security 

assessment steps are: assessment team establishment, test plan creation, 

attack vector identification, testing and reporting. Furthermore, Cyber 

Security Evaluation Tool (CSET) [16] is a question-answer based 

assessment tool which basically aims to assist with the correct 

configuration of systems by following standards and best practices. 

Many approaches have been proposed which extend these methods with 

advanced features [17][18] and/or customize them to become applicable 

to specific fields of technology [19]. Nonetheless, only few works target 

the IoT domain and none of them provide an overall threat model or 

threat modeling method. The work [20] focuses on the threat modeling of 
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the perception layer of IoT, while in [21] a risk based security model is 

presented for IoT in eHealth. In this respect the main novelty of our work 

is that it provides a generic threat and risk modeling method which is 

applicable for IoT systems independently of architecture and application 

domain. 

 

3. IoT Data Model 
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Fig. 1: a) layered architecture; b) communication model of an IoT system 

 

The majority of IoT services and features are in a tight relation with the 

distribution and delivery of the information, i.e., 'Thing' data. In this 

respect the understanding and modeling of the data handling in IoT 

systems is a basic requirement for overall system security, reliability and 

performance analysis. 

IoT platforms can be completely different by using various technologies, 

hardware and software to accomplish dedicated tasks. The 

communication within an IoT platform can be implemented using a wide 

variety of technologies, starting from Web services to hardware buses, 

e.g., RS-485, CAN, Modbus, and different wireless links, e.g., ZigBee. 

Nonetheless, the data flows inside these systems tend to be organized 

based on a similar schema (see Fig. 1a): the users (User layer) can access 

the resources exposed by the Things (Thing layer) through a middleware 

layer, referred to as Platform layer in the followings. 

Since IoT platforms interconnect Things and users, each of them has to 

provide at least two types of communication interfaces for external 
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interactions: (i) one to connect the Things; and (ii) another for user 

connections. Using these, the IoT platform is able to provide access to the 

resources exposed by the Things for the users and other Things. 

The tiny and cost-aware nature of the 'Things' generally limits their 

communication capabilities. Therefore in the majority of cases these are 

able to communicate only on short wired or wireless distances. Thereby, 

the physical placement of the IoT platform is imposed and limited by the 

geographical position of the Things connected to them. Sometimes it is 

feasible to place the IoT platform in the close vicinity of the connected 

Things, e.g., home automation, but in a significant group of application 

domains, e.g., Geographic Information Systems (GIS), the connected 

Things are physically distributed. 

We model the problem of the physical distribution using two different 

approaches (see Fig. 1b): (i) IoT platforms can be distributed in more 

equivalent instances and interconnected through platform-to-platform 

communication edges; or (ii) Local Data Concentrator (LDC) entities can 

be defined, which are able to synchronize a group of local Things with a 

remote IoT platform instance. The former case requires the definition of a 

third type of communication interface for platform-to-platform 

communication used for sharing the resources between the platform 

instances. The latter case defines a new type of vertical communication. 

Furthermore, we believe that the support for storing and retrieving 

certain information from the IoT platforms is a basic requirement for 

modern IoT platforms which may enable advanced features ranging 

from advanced surveillance capabilities to forecasts. In this respect, we 

consider that each IoT platform instance may use a local data storage to 

memorize information about the connected Things. Following this 

architecture, the totality of the interconnected IoT platform instances can 

be considered as a fog platform handling IoT specific data. 

 

4. Semi-Automated End-to-End Threat and Risk Modeling 

In this section we present several methods and tools which are widely 

used for security analysis and we propose a novel method for end-to-end 

threat and risk modeling in IoT systems. The proposed method is created 

by combining and extending the presented security analysis 

mechanisms. 

According to the definition of the Open Web Application Security Project 

(OWASP) threat modeling is a method for analyzing the security of an 
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application (or system) [22]. This process consists of the identification 

and evaluation of security risks, and based on this knowledge, the 

determination of the mitigation techniques, methods or algorithms. 

According to traditional threat analysis techniques the first step is to 

identify the main assets that need to be protected. For this, the first 

requirement is the adequate understanding of the analyzed system. This 

includes the identification of the interaction points with the external 

entities and the detailed mapping of the interactions between the 

different components of the system. The usage of the Data Flow 

Diagrams (DFD) in the process of the threat modeling is a common 

technique, because this provides a structured representation about the 

interactions inside the represented system. 

The next step in the threat modeling process is the identification and 

ranking of the possible threats based on information gained in the 

previous step. To organize these activities into a structured form 

Microsoft has proposed the STRIDE approach [23][24] and the DREAD 

model [23][25]. The former is dedicated for threat categorization while 

the latter for threat risk evaluation. 

The last step consists of the determination of the  countermeasures and 

mitigation techniques. These can be software architectural decisions, 

code quality improvements, but also infrastructural or configuration 

improvements. 

4.1. The STRIDE and DREAD Model 

The STRIDE model [23][24] has been proposed as a basic component of 

the Microsoft Security Development Lifecycle (SDL) [26] for general 

threat categorization. STRIDE is an acronym of the defined threat 

groups, which are: Spoofing, Tampering, Repudiation, Information 

Disclosure, Denial of Service, and Elevation of Privileges groups. 

Spoofing allows users to masquerade and to impersonate other users in 

order to gain access to possibly critical resources. Tampering is an action 

aimed to illegally modify the data handled (transported or stored) by the 

system. Repudiation is a malicious action with the goal to hide or change 

the authoring information of other prohibited operations. Information 

disclosure means reading data without granted access, Denial of Service is 

a malicious action with the goal to deny access to valid users, while 

Elevation of Privilege is a threat aimed to maliciously gain unauthorized 

access to resources. 
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DREAD is a classification scheme for threat rating [23]. Similarly with 

STRIDE, it is an acronym: each letter represents a component which has 

to be considered at the threat evaluation. These factors are: Damage, 

Reproducibility, Exploitability, Affected Users, and Discoverability. In this 

respect, the final risk score assigned to a thread has to be calculated as 

the sum of the ratings from each of the aforementioned categories [25]. 

Damage indicates the amount of damage caused if the threat is exploited. 

Reproducibility represents the level of ease to exploit the threat. 

Exploitability indicates the required skills and tools to exploit the threat. 

Affected users shows the amount of users which will be affected if the 

threat is exploited, while Discoverability expresses how easy it is to 

discover the threat. 

According to the specification, ratings do not have to use a large scale 

because it highly complicates the rating of threats, therefore it is 

recommended to use a simple scheme such as Low (1), Medium (2), High 

(3). Following this scoring system threats with a final score between 5 

and 7 can be treated as Low risk, scores between 8-11 as Medium risk, 

while threats which have received a score between 12 and 15 as High 

risk. Based on the numerical values assigned to different threats, these 

can be compared and prioritized. 

4.2. Semi-automated Threat Modeling 

Microsoft has created the SDL Threat Modeling Tool [27] with the 

purpose of making threat modeling easier and to partially automatize it. 

This tool operates with the extended DFD representation of the analyzed 

system/software created with the embedded editor of the tool. These 

DFDs are extended with trust boundaries, which are the representations 

of the locations where the level of trust changes inside the represented 

software/system. In addition, a set of attributes are assigned to each 

component of the DFD, which represent several properties of the 

system/software. Based on this representation the tool is able to 

automatically detect the potential threads targeting the different 

components and the interaction lines of the represented system. In 

addition, it automatically categorizes the detected threats using the 

STRIDE approach. The automatic threat detection is based on a 

matchmaking mechanism which uses grammar for threat definition in 

Backus-Naur Form (BNF). These definitions are stored in an embedded 

database of the tool which is also extensible. In the process of the 
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automatic discovery the tool iterates over the given DFD and analyses it 

per interactions between the specified components. 

4.3. End-to-End Threat and Risk Modeling Method 

In the case of the above mentioned methods the threat detection, 

categorization, ranking and evaluation is always performed separately 

on the different components and interactions of the software/system. The 

IoT paradigm is built over a schema in which the thing-to-user and user-

to-thing interactions are placed into the center. In addition, because of 

the complexity and heterogeneity of these infrastructures, the results of 

the different threat modeling and ranking activities may be highly 

varying in the different local segments of the end-to-end communication 

paths. Even if these local threat evaluation results hold important 

information about the overall security these do not express the state of 

the end-to-end security in a unified form. Therefore, an aggregation 

method is required to generate a unified expression which reflects the 

overall security state of the end-to-end data paths inside these systems. 

In this respect, we propose the End-to-End Threat and Risk Modeling 

Method (EETRMM) which is able to calculate the unified risk indicators 

per STRIDE threat groups separately for all the data paths of a system 

represented by a DFD, i.e., end-to-end interactions. This method is 

organized in the following steps: 

Step 1. Representation of the system in DFD form 

Step 2. Identification of the threats 

Step 3. Grouping of threats from Step 2. by the interaction sections 

where these were detected 

Step 4. Categorization of threats detected in Step 2. in STRIDE groups 

Step 5. Calculating the DREAD score for the threats identified in Step 2. 

Step 6. Aggregation of the DREAD scores from Step 5. per STRIDE 

groups of interaction sections 

Step 7. Detection of the end-to-end interactions in the system and 

assigning the threat groups from Step 3. and the aggregated DREAD 

scores from Step 6. to them 

Step 8. Aggregation of the scores from Step 6. per end-to-end interaction 

paths determined in Step 7. 

To perform Step 1., Step 2., Step 3. and Step 4. we employed the 

Microsoft Threat Modeling Tool. After the generation of the categorized 

threat list the tool stores all the information in a single file using the XML 
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description language. To extract the information needed in the next steps 

we parsed this XML. 

Step 5. has to be performed manually by considering the information 

from the former steps and analyzing in depth the properties and 

configurations of the system at the hand. 

Let us consider  the set of the identified threats,  the number of the 

interactions in the analyzed system, and  the set of threats on the 

 interaction, where , , and 

. Let us also consider  the set of the threats 

categorized in the  STRIDE group from the  interaction group, 

where ,  the total number of the STRIDE threat groups, 

, and . Let us 

denote with  the risk score of an  threat, where 

, and with  the aggregated risk score from a  threat 

set. 

In this respect, in Step 6. we applied the (1) function: 

 
where  is the aggregation function (AF). 

To automatically perform Step 7. we employed the graph theory. We 

constructed the graph model of the analyzed system as a directed graph 

based on the information parsed from the XML provided by the SDL 

Threat Modeling Tool. We considered as data path endpoints (DPE) the 

vertices whose in- and/or out-degree was one. We applied the depth-first 

search to find all end-to-end data paths (non-cyclical paths) between all 

combinations of the DPEs. This method might return several paths which 

are not real end-to-end data paths, therefore, these have to be manually 

excluded. 

Finally, to implement the aggregation function for the Step 8. let us 

consider  the end-to-end risk score of a data path for the  STRIDE 

group. To calculate this we applied the (2) function: 
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where  is the AF. 

In both of the (1) and (2) equations the AF can be implemented in various 

forms. Traditional AFs, e.g., maximum, average, sum, weighted sum, are 

suitable in the majority of the situations [28][29], but more complex 

approaches are also known which employ advanced statistical tools, e.g., 

distribution functions [30]. 

 

5. Conclusions 

While IoT is believed to occupy an important role in the future life of 

people, the security of these kind of systems plays a critical role. The 

security requirement of IoT services can only be met by taking it into 

consideration from the very first steps of system design. In this respect, 

dedicated tools are required for threat and risk modeling for IoT systems. 

In this work we proposed a semi-automated end-to-end threat and risk 

modeling method dedicated for IoT systems which is aimed to be used 

for the design of secure IoT applications and for the security assessment 

of IoT systems. 
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